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Abstract: The optical detector of formaldehyde designed for sensing cancer biomarkers in
air exhaled from human lungs with possible application in free atmosphere is described. The
measurements were performed at wavelengths ranging from 3595.77–3596.20 nm. It was stated
that at the pressure of 0.01 atm this absorption band exhibits the best immunity to typical
interferents that might occur at high concentration in human breath. Multipass absorption
spectroscopy was also applied. The method of optical fringes quenching by wavelength
modulation and signal averaging over the interferences period was presented. The application of
such approaches enabled the detection limit of about single ppb to be achieved.
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1. Introduction

Sensitive and fast detection of trace gases is useful for many applications, including industrial
and agriculture processes control, environmental monitoring, detecting of toxic compounds and
medical implementation [1–3]. Among various constituents the identification of formaldehyde
(H2CO) belongs to the most desirable. This gas is toxic, mutagen and possibly carcinogen. It is
frequently used in chemical industry. For instance it is used for household materials (furniture
and paints). Its emissions during production and from the products can affect human health and
cause discomfort, irritation of eyes, nose, and throat, leading to sneezing and coughing [4–9].
It also contributes to the “sick building syndrome” [10,11]. The number of patients allergic to
formaldehyde is still increasing in many industrial countries with air pollution problems [12–15].

Formaldehyde concentration levels in urban environment ranges typically from about 2 to 45
ppb, which is primarily due to industry and emissions from vehicles. The secondarily source
is the photochemical oxidation of volatile organic compounds at intense sunlight [16]. Typical
H2CO concentrations are 10–80 ppb in normal indoor conditions, however it can reach 80–300
ppb in polluted case. The World Health Organization (WHO) has set a 30 min exposure limit of
80 ppb [17]. According to American Conference of Governmental Industrial Hygienists (ACGIH)
formaldehyde concentration should not exceed 300 ppb at any time. Monitoring of H2CO in the
troposphere with ppb and sub-ppb resolution is also important for understanding of its role in
ozone formation mechanism [18]. Therefore, potential sensitive formaldehyde detection with a
fast time response is desired and versatile. This detection includes industrial and environmental
monitoring as well as indoor and urban air quality observations.
Formaldehyde has also been identified as a potential lung and breast cancer biomarker in

breath analysis [19–24]. Therefore a sensitive and reliable human breath H2CO sensor can
provide a promising method for non-invasive, real-time and point-of-care disease diagnostics
and metabolic status monitoring it can also be used as a screening test for primary or metastatic
cancer [25]. Morbid level of formaldehyde concentration is not well established. Early findings
claimed that in exhaled breath from breast cancer patients, H2CO concentration of 0.45–1.2 ppm
was observed compared to normal levels of 0.3–0.6 ppm [26,27].

Several different chemical and physical methods have been used. Liquid chromatography
[28,29], gas chromatography [30–32] and ion chromatography [33] can provide ppb and sub-ppb
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detection sensitivity. However the large weight and size of such equipment and long measurement
times are negative aspects associated with these methods. These methods are also expensive
and require qualified staff. Semiconductor gas sensors based on gas-sensitive films are a good
alternative for formaldehyde monitoring due to their short response time [34–36], however their
selectivity and relatively high detection limits (>250 ppb) are the limitations. Electrochemical
H2CO sensors are of good sensitivity and selectivity, but are limited by poor temporal stability
(with a time response of one hour) [37,38]. Chemical analyzers, which employ coloration of
a formaldehyde sensitive reagents, are also sensitive at ppb levels but their results might be
interfered by other organic compounds and require long sampling times (i.e. minutes or more).
Very sensitive sensors of H2CO (0.1 ppb) based on fluorescence induced by 353–355 nm laser
pulses were also constructed for atmospheric purposes [39–41].

Optical approaches to trace matter detection might lead to high selectivity, good selectivity and
fast response time (of less than one minute.). Here the application of mid-infrared spectroscopy
is especially interesting. Strong and narrow optical absorption lines corresponding to rotational-
vibrational transitions between the levels of the molecules of interest are located there. These
transitions provide molecular fingerprints of the constituents. Single pass spectrophotometry
and polarography [42] are powerful analytical techniques that allows the quantitative speciation
of gas mixtures, but are characterized by insufficient sensitivity. However the application of
various ultrasensitive methods of laser spectroscopy enable good results. Recent progress in
optoelectronics provides an opportunity to construct relatively simple biomarker sensors which
allow to detect sub-ppb concentrations [43].

Cavity ring-down spectroscopy is the most sensitive (but the most complicated) method of laser
absorption spectroscopy. The gas sample is located in optical resonator consisting of mirrors
of very high reflectivity. Laser light is used to determine the resonator quality factor. Such
parameter decreases when the losses coefficient (i.e. the absorption) increase. A comparison of
the Q-factor for empty cavity with one registered in the presence of investigated gas provides
opportunity to determine absorption coefficient of the sample. The sensitivity of CRDS systems
is practically about 4∼5 orders of magnitude better than one of single pass spectrometry [44–48].

Photoacoustic spectroscopy (PAS) is another sensitive approach that has also been applied for
formaldehyde detection [49,50]. Amplitude modulated light beam is introduced to the cell in
this method. Absorption of the radiation induces synchronous acoustic wave which is registered
with a sensitive microphone. Registration sensitivity might be increased many times when the
sample is located in acoustic resonator and the modulation frequency is matched to this resonance.
Additionally the replacement of the microphone by a resonant quartz tuning fork leads to further
sensitivity improvement (QEPAS) [51].
Multipass spectroscopy is also a sensitive methods [52,53]. High sensitivity is achieved due

to light path lengthening in the experimental cell containing the investigated gas sample. The
cell is ended with two concave mirrors with broadband coatings. A laser beam is introduced
through a small hole in one mirror and its reflection is then multiplied among the mirrors. As
a result the light path might be lengthened tens or ever hundreds of times inside the sample in
comparison with common single-pass cell. The absorption coefficient is found from the Lambert
– Beer absorption law.

In this paper we present our approach - high sensitivity sensor of formaldehyde based
on multipass spectroscopy. Technique of optical interferences quenching was applied. The
construction was designed for cancer biomarker detection in air exhaled from human lungs with
possible application in free atmosphere.

2. Spectrum analysis

High sensitivity optical detection requires a choice of a strong absorption band (fingerprint) of
constituent of interest. One has to avoid the disturbance by other species which might be present
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in the investigated sample. This is especially important in the case of breath analysis with more
than 3000 various constituents already detected in exhaled air [54].
The absorption spectrum of formaldehyde in mid-IR consists of two bands situated close

to 3500 nm and 5800 nm [55]. The long wavelength band however is strongly affected by
H2O absorption. Water vapour concentration in free atmosphere is usually above 0.1%. While
in breath it can reach up to 5%, so it exceeds the formaldehyde density by many orders of
magnitude. Moreover, in such long wavelength range the use of special optical materials is
necessary, complicating the experimental scheme.
Shorter wavelength band of H2CO is weaker but often used for optical detection of this

compound [56–63]. It is minimally affected close to 3595.8 nm (Fig. 1(a)), however it is still
interfered by strong absorption of H2O, CO2 (both up to ∼5% in breath) and CH4. Therefore the
optical detection of H2CO with the sensitivity of tens of ppb is impossible in normal pressure
conditions.

Fig. 1. Absorption spectrum of formaldehyde and typical interferents present in breath: a)
at normal atmospheric pressure; b) at the pressure reduced to 0.01 atm [55].

Molecular collisions are mainly responsible for spectral line shapes in the air samples [64].
The air pressure diminishing in the sample can efficiently reduce the collisional line broadening.
In Fig. 1(b), the relevant spectra of H2CO in air at the pressure of 0.01 atm are shown. Pressure
broadening was reduced many times which narrowed the absorption lines of the constituents and
caused their separation. Relative value of H2O, CO2 and CH4 backgrounds were diminished
about one hundred times. Due to that sensitive optical detection of formaldehyde might be
performed within the wavelength range of 3595.77–3596.20 nm. Although this is not the strongest
line group in the formaldehyde spectrum, we found that it is the least of all interfered in 3500
nm band. Therefore, it this the best for detection of trace amounts of this biomarker in the air
exhaled from the lungs.

3. Experimental

3.1. Experimental setup

A simplified scheme of the experimental setup is presented in Fig. 2. A 3 mW, CW tunable laser
(Nanoplus ICL IR) generating radiation within the range of 3596 - 3598 nm was applied. Coarse
tuning of the laser with a temperature controller (Toptica DCT 110) was used to stabilize its
wavelength near the center of the absorption band. Fine control of the wavelength (with precision
of 0.001 nm) was performed by a current controller (Thorlabs TLD001). The laser current was
modulated with a two channel function generator (Tektronix, AFG3102). One channel (frequency
91 Hz) served for the laser diode scan across the formaldehyde spectrum. The second channel
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(10 kHz) was used for optical interferences quenching (described in Section 3.2). Output signals
from both channels were combined with a different weights in custom summing amplifier.

Fig. 2. Simplified scheme of the experimental system.

The laser beam passed through two beamsplitters. The first one directed a part of the beam to
a wavemeter (HighPrecision, model WS-6IR) that was used for laser wavelength measurement.
The other beam splitter together with photodetector PD1 (Thorlabs, PDA20H) was applied for
monitoring of laser power before introduction to a multipass cell. A custom developed vacuum
Herriot cell was constructed with two spherical mirrors which had a curvature radius of 2 m. The
distance between the mirrors was 65 cm. The optical path length reached 17.5 m. The intensity
of the light beam leaving the cell was detected with photodetector PD2. A digital oscilloscope
(Tektronix DPO7000) was used for signal acquisition.

An Investigation of ICL laser was performed. We stated a nonlinearity of both power and
wavelength versus the supply current (Fig. 3). Therefore, higher harmonics occur in photodetector
signals when modulating the laser with a sine wave. This complicates using wavelength
modulation spectroscopy (WMS), especially its 2f variant.

Fig. 3. ICL power and wavelength versus the supply current.
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WMS-2f consists in laser wavelength modulation within the absorption line. This leads to
intensity modulation of the beam passing through the absorption cell. Phase sensitive detection
(lock-in) is applied for signal acquisition. In the case of using the laser that changes the wavelength
and power linearly with the supply current, the amplitude of second harmonics is proportional
to absorber concentration. Moreover, changes of the laser power with the supply current are
compensated. This method is widely applied for trace mater detection due to its immunity to
noises [75–80]. In our case, the nonlinearity of laser characteristics provide an additional signal
at 2f frequency that strongly limits the sensitivity of this approach.
The nonlinearity of the laser forced us to develop another measurement method. 91 Hz sine

signal from the generator (Fig. 2) scanned the laser wavelength across absorption spectrum of
formaldehyde, i.e. within 3595.77–3596.20 nm. The signal from photodiode PD2 was averaged
by the digital oscilloscope. Further elaboration of such data required removing of the background
caused by laser power modulation. For that purpose a polynomial was fitted to the signal, which
was then subtracted from the collected data. Then the excess white noise was removed with a
properly selected low-pass filter. Due to that, the characteristic spectrum of formaldehyde was
found. The fragment between the first and fourth minimum (see Fig. 1(b)) was separated. The
data prepared in this way was then numerically integrated. The result was compared with the
results registered for the 1 ppm calibrated mixture in order to determine H2CO concentration.

During this procedure the result was compared with the reference spectrum from the HITRAN
database [55]. Note, that due to using of the optical interferences quenching, the shape of the
reference spectrum was modified according to the description presented in the next chapter.

3.2. Optical interferences quenching

Optical interferences, also known as fringe interferences, are the effects which can seriously spoil
the accuracy of the experiment. The fringes are widely known as being generated in glass plates
due to the overlapping of the beams which are reflected multiple times among its surfaces. This
leads to modulation of the plate transmittance, according to formula: T(λ) = [1 + Fsin2(δ/2)]−1,
where F = 4R/(1 − R)2 denotes the finesse of the fringes, while R is the reflection coefficient
[65]. The parameter: δ = 4πnd/λ + ∆ϕ. The refraction coefficient is denoted here by n while λ
is the wavelength. The fringe phase shift ∆ϕ follows from uncertainty and thermal expansion of
the distance between the reflecting surfaces (d). Wavelength difference among the maxima of the
two neighbour fringes is equal to ∆λ ≈ λ2/2d (Fig. 4).
Experiments with multipass cells are often affected by this phenomenon. Inside the cells

the light beams are spread due to diffraction as well as due to scattering on mirror surface
imperfections, on other elements of the cell construction or just in the medium filling the cell.
Scattered light overlaps on different light spots on the mirrors, leading to unexpected interferences.
While the multipass cells are used for trace gases detection, usually its transmission is weakly
modulated by the absorption of the gas sample. Additional modulation by such interferences
might strongly reduce the sensitivity of this approach (Fig. 4). The fringes phase∆ϕ is temporarily
unstable due to the thermal expansion of the cell length and acoustic vibrations.

Many research groups have tried to solve this problem in different ways [66,67]. The simplest
method consisted in the limitation of spot numbers on the mirrors. However, this metod also
shortens the optical path and thus reduces the sensitivity. Another possible solution is to limit
the laser beam diameter, but this leads to diffraction and formation of the Airy discs that may
interfere with other spots. There are also solutions based on the application of special masks
inside the multipass cell which separate the beams corresponding to different spots [68,69]. The
active approaches consist in the periodic shifting of one of the mirrors by piezoelectric elements
[66,70] or by fast pressure driven elements [71]. Oscillating Brewster plates or lenses are also
applied [72,73]. This spoils stability of the interference fringes, and reduces the modulation when
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Fig. 4. Example of absorption line affected by optical interferences for two different phase
shifts. The wavelength is determined by oscillation period number: k=λ/∆λ.

averaging the light transmitted though the cell. The downside of these methods is a significant
system complication.

The reduction of optical interferences by laser wavelength modulation was also proposed [74].
We found that such modulation and signal averaging over the wavelength range (Dλ) equal to
the multiplicity of the fringes period is the most effective. From a mathematical point of view,
the method is based on the theorem that the averaging of any periodic function over its period
(or multiplicity of the period) provides the mean function value. The result is constant and
independent on the starting point of the averaging.

Effects of this approach are presented in Fig. 5. Changes of transmission of an optical device
affected by the interference considered above as a function of averaging range are shown for

Fig. 5. Quenching of optical interferences due to wavelength modulation and signal
averaging for various phase shifts.
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various ∆ϕ values. The most effective is the averaging over the wavelength range equal to
multiplicity of the fringe period (Dλ/∆λ= 1, 2, 3. . . ), since in this case the transmission does not
depend on the phase shift and it is equal to a mean value T = (1 − R)2.
A sine signal of 10 kHz was applied in our experiment for this purpose. Its amplitude, i.e.

the range of modulation, was adjusted manually, through looking on the oscilloscope screen
for the best minimization of interferences. It corresponded to ∆λopt = 0.011 nm. There is about
10% discrepancy between measured value ∆λopt = 0.011 nm and the ∆λ= λ2/2d= 0.00994 nm
calculated for our multipass cell of d= 65 cm. It follows from the cell construction. The mirrors
were 65 cm apart, but the surfaces of the metal mirror handles were approximately 8 cm closer to
each other. That shows, the fringes were generated due to laser light scattering on these handles.
This signal was combined in summing the amplifier with a 91 Hz signal serving for wavelength
scanning across the formaldehyde spectrum. The amplifier output was connected with current
control module and drove the laser. The averaging (over 1000 samples) was performed with a
digital oscilloscope.
In Fig. 6, the spectra of laser light losses registered in a multipass cell filled with 1 ppm of

formaldehyde in air at 0.01 atm is presented. The upper curve corresponds to the registration
achieved without fringes suppression while the lower curve represents the spectrum purified by
10 kHz laser wavelength modulation.

Fig. 6. Quenching of optical interferences in transmission spectrum of multipass cell filled
with 1ppm of formaldehyde.

The application of averaging over a certain range of wavelengths leads to the spectral lines
broadening and flattening. This was already shown in Fig. 7. Such broadening should be taken
into account when comparing the registered spectrum with the reference spectrum. Therefore,
preparing the reference spectrum HITRAN data was averaged over the range ∆λopt = 0.011 nm.
The shape of this curve (Fig. 6) coincides well with the reference spectrum of H2CO from the
HITRAN database [55]. A correlation coefficient of 99% was achieved.

3.3. Results and discussion

Correction over the spectrum amplitude must be performed when the concentration of the
constituent is based on amplitudes comparing between the reference spectrum and the measured
spectrum. In our case, a calibrated mixture of 1 ppm of H2CO in nitrogen (Messer, precision
10%) was used as a reference. As it was stated before, we performed the investigation of our
formaldehyde sensor at the pressure of 0.01 atm. In order to study the sensor output for different
H2CO concentrations a following procedure was conducted. In the first step the sensor was filled
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Fig. 7. Comparison of experimentally registered H2CO spectrum with HITRAN reference
spectrum and the reference spectrum averaged over ∆λopt range.

with this mixture. Therefore, the initial formaldehyde concentration was 2.7·1011 cm−3. After
collecting the signal, the mixture was diluted with pure nitrogen evaporated from its liquid phase.
The pressure was raised twice. After a time period of about 15 min, which was necessary to
achieve a good mixing of the gases, the pressure was reduced again to the value of 0.01 atm.
Precise dosing valves were used at the input and output of the cell. This ensured an appropriate
flow rate of gas filling and pumping, and enabled the pressure control with a precision of 10−5

atm. The MKS Baratron (model 102A) was used to measure it. We expected that in this way a
new mixture would be achieved with the half density of formaldehyde in respect to the previous

Fig. 8. Results of formaldehyde dilution in nitrogen.
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one. The measurement of the concentration was performed again. This operation was repeated
several times.

The results of this experiment are shown in Fig. 8. It is evident that it failed to achieve a step
to step partition with the coefficient of 2. Only the density of about 6·1010 cm−3 was achieved
due to 10 steps, starting from the initial formaldehyde concentration of about 2.7·1011 cm−3.
A deposit of formaldehyde in the apparatus is responsible for this effect. This compound

adheres to the walls of the equipment in the form of a polymer (polioxymethylene) [81]. The
polymer that was deposed on the walls at higher formaldehyde concentrations evaporates and
provides gaseous H2CO. The achievement of the density below the asymptotic value of 6·1010

cm−3 due to successive divisions was not possible.
The contamination of formaldehyde sensors by polioxymethylene is a real problem when

testing the concentrations at ppb level. Generally, cleaning of the equipment from this polymer
might be performed by heating the equipment to the temperature of about 200 °C. This is rather
impossible for the optical systems. Using lower temperatures which are acceptable for the
multipass cells is useless. We stated that heating to about 70 °C together with pumping to about
10−5 atm or blowing the cell with pure nitrogen does not lead to any essential progress, even
within several days. The other way is the use of the Mannich reaction [82], which requires
admitting ammonia vapour under the atmospheric pressure.
We decided to benefit from the effect of polioxymethylene deposition and to use it for our

detector testing at low formaldehyde concentrations. The cell was evacuated to the residual
pressure of 10−7 atm and filled with pure nitrogen at 0.01 atm. We then observed H2CO evaporated
from the apparatus walls that slowly filled the sensor. The registration of the concentration was
initially performed every minute, then less frequently. This result is presented in Fig. 9.

Fig. 9. Rise of formaldehyde concentration due to polioxymethylene evaporation from
walls with fitted exponential growth (Eq. (2)).

Simple model of H2CO deposition on the walls and evaporation was prepared. In this approach
the density of molecules evaporating per unit of time is equal to α, while the inverse process,
i.e. the number of particles adhering to apparatus surfaces is proportional to H2CO vapour
concentration (n) and deposition constant k. The evolution of the vapour concentration is then
described by following differential equation:

dn(t)
dt
= −kn(t) + α, (1)
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while its solution is in the form:

n(t) =
α

k
[1 − exp(−kt)]. (2)

This function fits well to the experimental data (Fig. 9). The fitting parameters were: the
deposition constant k ≈ 5·10−4 s−1, the evaporation speed α ≈ 3·107 cm−3s−1 and the saturation
concentration: α/k ≈ 6·1010 cm−3. Note that this value is similar to the asymptotic concentration
achieved in a previous experiment where the consecutive density partition was applied.
One can evaluate using Eq. (2) that due to the polioxymethylene evaporation the sensor was

filled to a H2CO concentration of about 1,8·109 cm−3 within the first minute of the measurement.
This corresponds to the mixing ratio of about 6.6 ppb. This is a minimal value of formaldehyde
concentration which might be generated in our experiment. Various other approaches (like
attempts to clean the cell by Mannich reaction and then filing it by a correspondingly small
portion of formaldehyde) were not successful since H2CO density in the sample was temporary
unstable due to adhesion of these constituents to the walls. From where else these attempts
ensured us, the detection limit of our sensor was much lower than 6.6 ppb.

4. Conclusion

We present the optical sensor of formaldehyde. Its primary design is to search for the cancer
biomarker in air exhaled from human lungs. Multipass absorption spectroscopy was applied.
The selection of the spectral range (3595.77 - 3596.20 nm), and the use of sample pressure
reduced to 0.01 atm, enabled to immunize the detection against typical interferents present in
breath at high concentration including water vapour, carbon dioxide and methane, as well as
other constituents. The method of optical fringes quenching and a proprietary approach to signal
analysis were presented. The use of such approaches made it possible to achieve a detection limit
below 1.8•109 cm-3 (6.6 ppb), which is more than sufficient to detect the morbid level of this
biomarker in breath.
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